Бастиан Ш. Крупномасштабное машинное обучение вместе с Python

Крупномасштабное машинное обучение вместе с Python

987 руб.

В корзину
987 руб.
* - Обязательно для заполнения
Ф.И.О. *
E-Mail *
Телефон *
Комментарий к заказу
Купить в 1 клик

О книге. С распространением больших данных растет спрос на вычислительную и алгоритмическую эффективность. Главная задача настоящей книги состоит в том, чтобы предоставить способы применения мощных методов машинного обучения с открытым исходным кодом в крупномасштабных проектах без привлечения дорогостоящих корпоративных решений или больших вычислительных кластеров. Описаны масштабируемое обучение в Scikit-learn, нейронные сети и глубокое обучение с использованием Theano, H2O и TensorFlow. Рассмотрены классификационные и регрессионные деревья, а также обучение без учителя. Охвачены эффективные методы машинного обучения в вычислительной среде MapReduce на платформах Hadoop и Spark на языке Python. С этой книгой вы научитесь: • применять большинство масштабируемых алгоритмов машинного обучения; • работать с новейшими крупномасштабными методами машинного обучения; • увеличивать прогнозную точность при помощи методов глубокого обучения и масштабируемых методов обработки данных; • работать с вычислительной парадигмой Map-Reduce в платформе Spark; • применять эффективные алгоритмы машинного обучения на основе платформ Spark и Hadoop; • создавать мощные ансамбли в крупном масштабе; • использовать потоки данных для обучения линейных и нелинейных прогнозных моделей на чрезвычайно больших наборах данных, используя всего одну машину.

подробнее
Артикул:286055
Автор : Бастиан Ш.
Страниц: 358
Переплет : Твердый
Издательство: ДМК Пресс
ISBN : 978-5-97060-506-6

  • Анонс
  • Подробнее
  • Отзывы

Бастиан Ш. Крупномасштабное машинное обучение вместе с Python

С распространением больших данных растет спрос на вычислительную и алгоритмическую эффективность. Главная задача настоящей книги состоит в том, чтобы предоставить способы применения мощных методов машинного обучения с открытым исходным кодом в крупномасштабных проектах без привлечения дорогостоящих корпоративных решений или больших вычислительных кластеров. Описаны масштабируемое обучение в Scikit-learn, нейронные сети и глубокое обучение с использованием Theano, H2O и TensorFlow. Рассмотрены классификационные и регрессионные деревья, а также обучение без учителя. Охвачены эффективные методы машинного обучения в вычислительной среде MapReduce на платформах Hadoop и Spark на языке Python. С этой книгой вы научитесь: • применять большинство масштабируемых алгоритмов машинного обучения; • работать с новейшими крупномасштабными методами машинного обучения; • увеличивать прогнозную точность при помощи методов глубокого обучения и масштабируемых методов обработки данных; • работать с вычислительной парадигмой Map-Reduce в платформе Spark; • применять эффективные алгоритмы машинного обучения на основе платформ Spark и Hadoop; • создавать мощные ансамбли в крупном масштабе; • использовать потоки данных для обучения линейных и нелинейных прогнозных моделей на чрезвычайно больших наборах данных, используя всего одну машину.

Отправить отзыв

Ваше имя:
*

Ваше e-mail:
*

Текст отзыва:
*
что то нето"*"не то 2